
RTS: Regression Test Suite
Amy Langenhorst

This is a howto document for the RTS (Regression Test Suite) for FMS. The RTS is a tool to facilitate running FMS
models. The user creates a model description file in xml format (or uses a preexisting file) and uses various rts-utilities
on it. The rts-utilities, written in perl, can acquire code, create and submit compile scripts, and create and submit run-
scripts, among other things. A pdf version of this document is available at http://www.gfdl.noaa.gov/~arl/rts/rts.pdf.

HTML pages generated from DocBook are best viewed in Netscape 7.

Table of Contents
1. What is the RTS? .. 1
2. What does the RTS test? .. 2
3. Quickstart Guide .. 2
4. Editing the XML .. 3
5. Inheritance .. 3

5.1. Special Case: Namelists ... 3
5.2. Special Case: Field Tables ... 3
5.3. Special Case: Executable ... 3
5.4. Special Case: mkmf template .. 4

6. Tips and Hints .. 4
7. Future Work .. 4
A. Usage Information: rtsmake ... 5
B. Usage Information: rtsrun .. 5
C. Usage Information: rtscheck ... 5
D. Usage Information: rtslist .. 5
E. Usage Information: rtsstatus ... 6
F. Naming conventions ... 6

1. CVS, Compilation Naming Conventions ... 6
2. Runscript Naming Conventions ... 6
3. Runscript Output Naming Conventions ... 7

1. What is the RTS?
The RTS consists of:

• An XML file which contains all experiment-specific variables such as the cvs commands used to check out the
code, the path of the initial conditions file, namelists, and runtime specifications. This is the only file which users
need to edit in order to use the RTS.

• Two c-shell template scripts for compiling and running models. The user never needs to look at them to run the
RTS.

• Four perl scripts which read the XML file and perform a specific function:

• rtsmake: checks out the model's code if necessary. Creates and optionally submits compile scripts using a c-shell
compile template.

• rtsrun: creates and optionally submits runscripts based on a c-shell runscript template.

• rtscheck: runs reproducibility tests on output from RTS runs. Also calculates timing and performance statistics
(work in progress).

• rtslist: lists the experiments in your xml file, optionally with descriptive information about each model as pro-
vided in the xml.

• rtsstatus: reports on the status of your batch compiles and batch runs. This information is parsed from the batch
stdout files.

• Several conventions upon which defaults are based, such as the directory structure and naming conventions.

Amy Langenhorst (arl@gfdl.noaa.gov) - 1

2. What does the RTS test?
Balaji's document [http://www.gfdl.noaa.gov/~vb/rts/] describes the goals, policies, and technical details of the RTS.

3. Quickstart Guide

1. Execute the following cvs checkout:

setenv CVSROOT /home/fms/cvs
cvs co rts
This will give you a directory called rts/ and a file inside called rts.xml, which contains the xml for several ex-
periments from the FMS Model Development Database.

Warning

If your RTS directory is something other than /home/$USER/rts, you will need to edit
the fourth line in rts.xml accordingly:

<directory type="root">$HOME/rts</directory>
If you wish to put your archived output in a directory other than /archive/$USER/rts, you
should edit the sixth line accordingly:

<directory type="archive">/archive/$USER/rts</directory>

2. Change to the directory containing rts.xml and run /home/fms/bin/rtslist -v to view available experiments. See
Appendix D for usage information on rtslist.

• You must either run the rts-utilities from the directory containing rts.xml, or else give them an -x argument
with the path to your XML file.

• You can add /home/fms/bin to your Unix $PATH to make this (and the following commands) quicker to
type.

3. Run /home/fms/bin/rtsmake only on the experiment(s) for which you want to check-out cvs code and/or compile.
See Appendix A for usage information on rtsmake.

• The cvs source will be placed in $root/$name/src/.

• The compilation will be done in $root/$name/exec/ and the executable will be created as
$root/$name/exec/fms_$name.x.

• The script's stdout will be placed in $root/$name/exec/stdout. You can monitor the progress of any RTS
compile by monitoring the stdout file.

• Use the -s option to automatically qsub the compile script to the AC. For example, if you want to check-out
and compile am2p10 and mom4_test1, use: /home/fms/bin/rtsmake -s am2p10 mom4_test1.

4. Run /home/fms/bin/rtsrun on the experiment(s) you want to run. See Appendix B for usage information on rt-
srun.

• Again use the -s option to automatically qsub the scripts to the LSC.

• To run all currently available tests (basic, scaling, restarts) on am2p10 and mom4_test1, use: /
home/fms/bin/rtsrun -s -r suite am2p10 mom4_test1.

• The scripts' stdout files will be placed in /archive/$USER/rts/$name/$RUNPARAMS/ascii/stdout. For
details on the naming convention of $RUNPARAMS, see Appendix F.

5. Run rtsstatus to check the progress of the runs you've submitted as batch jobs. See Appendix E for usage informa-
tion on rtsstatus. To see how far your compiles or runs have gotten for am2p10 and mom4_test1, use /
home/fms/bin/rtsstatus am2p10 mom4_test1. It is helpful to use the command qa -n -u $USER along with
rtsstatus to see which jobs are running or waiting in the queue.

6. When at least two of the runs have completed (successfully), you can use rtscheck to verify the reproducibility

Amy Langenhorst (arl@gfdl.noaa.gov) - 2

http://www.gfdl.noaa.gov/~vb/rts/
http://www.gfdl.noaa.gov/~vb/rts/

over pe-counts and restarts. See Appendix C for usage information on rtscheck. To verify that the restart files for
am2p10 and mom4_test1 have reproduced bit-for-bit, use: /home/fms/bin/rtscheck am2p10 mom4_test1.

4. Editing the XML
XML (Extensible Markup Language [http://www.xml.com/pub/a/98/10/guide0.html]) is a markup language similar to
HTML, but where we've defined tags appropriate for our use in the RTS. The xml file is called rts.xml by default.
This is a text file which you can edit with your favorite text editor. Vi (VIM), emacs, and nedit perform syntax high-
lighting automatically.

A sample xml file documents all the tags which are available. It is available syntax-highlighted in HTML format at
http://www.gfdl.noaa.gov/~arl/rts_example.

A tool called 'pollo' is available for browsing xml at /home/arl/bin/pollo. Pollo provides an interactive, graphical
view of any xml file. Currently pollo can mess up your spacing if you save from it, so I recommend it only as an xml
browser until a newer version is released. To use pollo to view a file, execute /home/arl/bin/pollo rts.xml.

5. Inheritance
It is possible for an experiment to inherit parameters from another experiment in the same xml file. Sample XML illus-
trating inheritance is shown in http://www.gfdl.noaa.gov/~arl/rts_example. Aside from a few special cases, the rules
governing inheritance are as follows.

• rtsmake and rtsrun will look inside the experiment for the data, such as <gridSpec>, for example.

• If the data is not found, rtsmake and rtsrun will look for an inherit attribute in the <experiment> tag. If an
inherit attribute is found, rtsmake and rtsrun will look inside the given experiment for the data. It will recurse in
this manner until the data is found or until there are no more experiments from which to inherit.

• If the data is not found in the inheritance tree, the value will be empty. If the value was required, an error message
will be printed. If the value was optional, a warning message will be printed if you use the -v option on rtsmake and
rtsrun.

5.1. Special Case: Namelists

Namelists are parsed and will be given priority as follows:

1.2.3.4.A warning will be printed if you try to specify a namelist more than once. It is currently not possible to inherit only
some values from a given namelist.

5.2. Special Case: Field Tables

Field tables are currently not parsed and are inherited on the basis of their file names. If you specify at least one field ta-
ble, no field tables will be inherited from the parent experiment.

5.3. Special Case: Executable

The name of the executable has a default value if not specified anywhere. The default location is
$root/$name/exec/fms_$name.x.

The rts-scripts decide whether a child experiment should have its own executable based on whether you have specified

Amy Langenhorst (arl@gfdl.noaa.gov) - 3

http://www.xml.com/pub/a/98/10/guide0.html
http://www.xml.com/pub/a/98/10/guide0.html
http://www.xml.com/pub/a/98/10/guide0.html
http://www.xml.com/pub/a/98/10/guide0.html
http://www.xml.com/pub/a/98/10/guide0.html
http://www.gfdl.noaa.gov/~arl/rts_example
http://www.gfdl.noaa.gov/~arl/rts_example

new data in the <cvs> or <compile> sections of the xml for your child experiment. If you intend for your experiment to
inherit an executable, you should not re-specify anything in the <cvs> or <compile> sections of your child experiment,
because then rtsmake will think you wanted to recompile with the new data. Actually, you do not need to run rtsmake
on experiments which inherit an executable since the sole purpose of rtsmake is to create an executable.

5.4. Special Case: mkmf template

The location of the mkmf template is a special case because it has a default value if not specified anywhere. The default
location is /home/fms/bin/mkmf.template.$platform.

6. Tips and Hints

• You may wish to make other directories inside your $root/$name experiment directories, such as

$root
`-- am2p11

|-- src #created by rtsmake for cvs checkouts
|-- exec #created by rtsmake for compilation.
|-- dev #for code files under development. List in <srcList> in xml.
`-- input #for input files like diag_table, etc.

• <codeBase> and <modelConfig> are used to construct the first cvs checkout command. The rest of the cvs com-
mands go in <cvsUpdates>, which can handle any csh commands.

• You can use $root and $name in your xml elements. You will eventually also be able to set up other variables, but
this has not yet been implemented.

• rtsrun sets the values of $day and $month in coupler_nml.

• om2 users: you can't just list the 'shared' directory currently in the srcList element because this list gets passed di-
rectly to mkmf, and mkmf doesn't search directories recursively. The optimal way to handle this is to check out
mom4, rename the path_names file, and then check out the shared directory. The resulting path_names file will be
used to compile shared code.

• We're working on getting rtscheck to operate with netcdf files. In the meantime Matt has provided an ocean.res file
with a checksum for comparison.

• If you want to run several configurations of the same model (using the same executable but different namelists or
other input files) you don't need to check out and compile the same code multiple times. Compile once and use the
'inherit' attribute on the remaining experiments.

• For information on the naming of output directories, see Appendix F.

7. Future Work
The RTS is a work in progress, but should be stable and usable. Planned improvements include:

••••••••••••••••••These are done. Let me know if you find bugs.

••••••••
Please let me know if you have problems or suggestions (arl@gfdl.noaa.gov [mailto:arl@gfdl.noaa.gov]).

Amy Langenhorst (arl@gfdl.noaa.gov) - 4

mailto:arl@gfdl.noaa.gov

A. Usage Information: rtsmake

Synopsis: rtsmake checks for the existence of the code directory for each experiment
(root/experiment_name/src), and if it is not found, executes
the cvs commands from your xml file. It then creates a simple compile
script based on a c-shell template and variables from your xml file.

Usage: rtsmake [-s -v -x xmlfile] experiment [experiment2 ...]

-s = automatically submit the script with qsub
-v = verbose flag
-x xmlfile = use alternative xml file (default: rts.xml)
-f = force rtsmake to run cvs commands, even if src directory exists
-n = don't run cvs commands, even if no src directory exists
-t = use trap_unititialized and other debugging FFLAGS
experiment = experiment to create scripts for; must be found in xml file

B. Usage Information: rtsrun

Synopsis: rtsrun creates a runscript based on a runscript template
and variables from an xml file.

Usage: rtsrun [-s -v -t -x xmlfile -r name] experiment [experiment2 ...]

-s = automatically submit the runscripts with qsub -l cpuset
-v = verbose flag
-t = use the executable created with 'rtsmake -t' which uses

trap_unititialized and other debugging FFLAGS
-x xmlfile = use alternative xml file (default: rts.xml)
-r name = perform regression testing using the XML marked 'name'

The keyword "suite" will do: basic, restarts, scaling.
basic = one 8-day run
scaling = one 8-day run on various pe-counts
restarts = two 4-day runs and four 2-day runs on the

same number of pes as the 'basic' run
production = uses run parameters from database

experiment = experiment to create scripts for; must be found in xml file

C. Usage Information: rtscheck

Synopsis: rtscheck runs the resdiff command to compare restart files on the
output produced by rtsrun-generated runs and prints a report. It
also generates a table listing of the runtime for different
processor counts by parsing the fms.out files.

Usage: rtscheck [-x xmlfile] experiment [experiment2 ...]

-x xmlfile = use alternative xml file (default: rts.xml)
experiment = experiment to check; must be found in xml file

D. Usage Information: rtslist

Synopsis: rtslist lists the experiments in your xml file.

Usage: rtslist [-v -x xmlfile]

-v = verbose (print experiment descriptions)
-x xmlfile = use alternative xml file (default: rts.xml)

Amy Langenhorst (arl@gfdl.noaa.gov) - 5

E. Usage Information: rtsstatus

Synopsis: rtsstatus parses batch script stdout to relay the status
of your rtsmake and rtsrun shell scripts. Note that if you ran
the scripts interactively, no status information will be found
since there will be no batch script stdout files.

Usage: rtsstatus [-c -r -h -x xmlfile] experiment [experiment2 ...]

-c = show compile status only
-r = show run status only
-h = show this help message, then exit
-x xmlfile = use alternative xml file (default: rts.xml)
experiment = experiment to get status of; must be found in xml file

F. Naming conventions

1. CVS, Compilation Naming Conventions

The program rtsmake creates a CVS checkout script in $root/scripts/cvs_$name where $root is defined at the
top of your rts.xml file and $name is the experiment name. The CVS checkout script checks out source code into
$root/$name/src.

The compilation script is then created and placed in $root/scripts/mk_$name. The executable created by the script
will be $root/$name/exec/fms_$name.x.

2. Runscript Naming Conventions

The program rtsrun will create one or more runscripts. There are two methods of determining the name for a runscript
based on whether you are running regression tests (rtsrun is invoked with the -r regression_name argument) or a pro-
duction run (rtsrun is invoked without the -r regression_name argument).

For production runs, rtsrun will create the runscript as $root/scripts/$name, deriving the runtime information
from the <production> element(s) in your XML file. An example <production> element is shown here.

<runtime>
<production simTime="8" units="years" npes="45">

<segment simTime="1" units="months" runTime="00:44:00"/>
<ncCombine segments="12" runTime="00:40:00"/>
<ncAverage segments="12"/>

</production>
</runtime>

The production runscript will run the full simulation time of 8 years in 1 month segments as denoted above, restarting
itself as needed every 8 hours of run time. For explanation of how the production element XML is translated to runtime
information in the runscript, see http://www.gfdl.noaa.gov/~arl/rts_example.

For regression tests, rtsrun will derive the runtime information from the <regression> element(s) in your XML file.
Example <regression> elements are shown here.

<runtime>
<regression name="basic">

<run days="8" npes="15" runTimePerJob="00:30:00"/>
</regression>
<regression name="restarts">

<run days="4 4" npes="15" runTimePerJob="00:20:00"/>
<run days="2 2 2 2" npes="15" runTimePerJob="00:20:00"/>

Amy Langenhorst (arl@gfdl.noaa.gov) - 6

http://www.gfdl.noaa.gov/~arl/rts_example

</regression>
<regression name="scaling">

<run days="8" npes="1" atmos_layout="1,0" ice_layout="1,0" runTimePerJob="04:00:00"/>
<run days="8" npes="3" runTimePerJob="02:00:00"/>
<run days="8" npes="45" runTimePerJob="00:20:00"/>
<run days="8" npes="60" runTimePerJob="00:20:00"/>

</regression>
</runtime>

To run a regression test with the information in the regression element labeled "basic" above, use rtsrun -r basic
$name. Then a runscript will be created at $root/scripts/$name_$runparams, where $runparams is a string de-
termined by the length of the run, the number of times the executable is called within the script, and the number of pro-
cessors used. In the "basic" example above, $runparams would be 1x0m8d_15pe, which translates to "one times zero
months, eight days on 15 processors".

A single rtsrun command may create more than one runscript for a given experiment. The runscripts will have different
$runparams strings. With the example XML above, rtsrun -r restarts $name would create two runscripts, and rtsrun
-r scaling $name would create four runscripts. The program rtsrun also recognizes the keyword suite, which would
create runscripts from each of the three regression elements basic, restarts and scaling.

3. Runscript Output Naming Conventions

Output directories are placed in $archive/$name/ where $archive is specified at the top of your rts.xml file and
$name is the experiment name. Production output is placed in three directories directly in $archive/$name/. For ex-
ample, if you specified the following in your rts.xml file:

<setup>
<directory type="archive">/archive/fms/rts</directory>

</setup>
then production output would be as follows for experiment am2p10:

/archive/fms/rts/am2p10/
|-- ascii
|-- history
|-- restart

Regression test output utilizes another output directory level under $archive/$name/ named for the runtime informa-
tion as described above. The example regression elements shown in the previous section would produce the following
output structure:

/archive/fms/rts/am2p10/
|-- 1x0m8d_15pe
| |-- ascii
| |-- history
| `-- restart
|-- 1x0m8d_1pe
| |-- ascii
| |-- history
| `-- restart
|-- 1x0m8d_3pe
| |-- ascii
| |-- history
| `-- restart
|-- 1x0m8d_45pe
| |-- ascii
| |-- history
| `-- restart
|-- 1x0m8d_60pe
| |-- ascii
| |-- history
| `-- restart
|-- 1x1m0d_45pe
| |-- ascii
| |-- history
| `-- restart
|-- 2x0m4d_15pe
| |-- ascii
| |-- history
| `-- restart
`-- 4x0m2d_15pe

Amy Langenhorst (arl@gfdl.noaa.gov) - 7

|-- ascii
|-- history
`-- restart

Amy Langenhorst (arl@gfdl.noaa.gov) - 8

	RTS: Regression Test Suite
	Table of Contents
	1. What is the RTS?
	2. What does the RTS test?
	3. Quickstart Guide
	4. Editing the XML
	5. Inheritance
	5.1. Special Case: Namelists
	5.2. Special Case: Field Tables
	5.3. Special Case: Executable
	5.4. Special Case: mkmf template

	6. Tips and Hints
	7. Future Work
	A. Usage Information: rtsmake
	B. Usage Information: rtsrun
	C. Usage Information: rtscheck
	D. Usage Information: rtslist
	E. Usage Information: rtsstatus
	F. Naming conventions
	1. CVS, Compilation Naming Conventions
	2. Runscript Naming Conventions
	3. Runscript Output Naming Conventions

